设为首页收藏本站

华讯行业社区

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1139|回复: 1
打印 上一主题 下一主题

二氧化钛(钛白粉)

[复制链接]
跳转到指定楼层
楼主
发表于 2008-5-23 12:09:00 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
二氧化钛(钛白粉)
2 x! O& A( K6 e2 |8 x: X: p0 q9 a. r% R

. C! A2 l6 p; I: L7 P/ vCAC关于二氧化钛(钛白粉)的使用规定
$ ?- ~8 c) Y0 HGSFA Online 6 C- M* E) W/ ]1 ^0 @1 b
Food Additive Details& z; `0 D( m7 z  U" k
Titanium Dioxide (171)" G: m) P  u+ t' i# ], q9 ^
Number Food Category  
$ j8 v& o4 J6 C& B3 K: f  01.1.2 Dairy-based drinks, flavoured and/or fermented (e.g., chocolate milk, cocoa, eggnog, drinking yoghurt, whey-based drinks)  
5 K' Q& K2 j. Z  01.3 Condensed milk and analogues (plain)  
' T' O3 H6 @5 K$ r/ q  01.4.3 Clotted cream (plain)  " T: x# c, c6 H% |" @4 s+ P
  01.4.4 Cream analogues  
( Y" ^' T9 q, U8 R" {  01.5 Milk powder and cream powder and powder analogues (plain)  ; r6 U' L5 l6 }; V" N# M
  01.6 Cheese and analogues  & L$ d+ y/ i: v2 q
  01.7 Dairy-based desserts (e.g., pudding, fruit or flavoured yoghurt)  
3 t$ c2 S  f, E! P& t1 z7 O- K; T  01.8 Whey and whey products, excluding whey cheeses  0 v- D' t( S- P' W1 k# A: x
  02.2.1.2 Margarine and similar products   
/ l1 {+ E5 H& }5 {" M- n+ C  02.2.1.3 Blends of butter and margarine  
+ @0 f9 f' N4 T  02.2.2 Emulsions containing less than 80% fat   
7 E' C* g& ?7 F9 \3 L3 @  02.3 Fat emulsions maily of type oil-in-water, including mixed and/or flavoured products based on fat emulsions   
# J! w6 O" K7 p1 Q3 W7 ]3 C& n# v  02.4 Fat-based desserts excluding dairy-based dessert products of food category 01.7  
* R1 B& @; X7 N( }  _; F  03.0 Edible ices, including sherbet and sorbet  
) s* a9 F& t1 k9 _" ?& E  04.1.2 Processed fruit  , |5 o$ |- N1 S9 V* q
  04.2.2.2 Dried vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), seaweeds, and nuts and seeds  3 \7 v* r/ Q* h4 o
  04.2.2.3 Vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera) and seaweeds in vinegar, oil, brine, or soy sauce  
* z$ A4 p" z( y) ?8 S7 i  04.2.2.4 Canned or bottled (pasteurized) or retort pouch vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), and seaweeds  
* S% Y$ C2 e( ^) Z4 I7 J1 e  04.2.2.5 Vegetable (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), seaweed, and nut and seed purees and spreads (e.g., peanut butter)  $ C& v+ T- {: M, L: b  _$ _
  04.2.2.6 Vegetable (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), seaweed, and nut and seed pulps and preparations (e.g., vegetable desserts and sauces, candied vegetables) other than food category 04.2.2.5  + ]0 p8 G- S- Z$ R: z  I# O
  04.2.2.8 Cooked or fried vegetables (including mushrooms and fungi, roots and tubers, pulses and legumes, and aloe vera), and seaweeds  2 ?7 s9 C. x$ b+ |& S) ^. a
  05.0 Confectionery  - p  N( l, H* v# c* ^
  06.3 Breakfast cereals, including rolled oats  " \; M$ P( D1 {; x2 C: }
  06.4.3 Pre-cooked pastas and noodles and like products  & P( f- E! ~2 p; G6 R
  06.5 Cereal and starch based desserts (e.g., rice pudding, tapioca pudding)  , {% Q, P3 R1 s* S
  06.6 Batters (e.g., for breading or batters for fish or poultry)  
" g) _" U) T5 G4 _; G  06.7 Pre-cooked or processed rice products, including rice cakes (Oriental type only)  0 J$ a1 T% F- J3 U
  06.8 Soybean products (excluding soybean products of food category 12.9 and fermented soybean products of food category 12.10)  
6 ~/ B4 h1 j; L- h- x  07.0 Bakery wares  3 W/ \, G) I* t$ H+ r7 Q
  08.2 Processed meat, poultry, and game products in whole pieces or cuts  
$ c  I3 s; g; a' j* x* T/ P  08.3 Processed comminuted meat, poultry, and game products  
) S6 R% K7 p: p& ~  08.4 Edible casings (e.g., sausage casings)  
* G8 ]" E' O- l0 m  09.3 Semi-preserved fish and fish products, including mollusks, crustaceans, and echinoderms  
. Z* |6 E* o. ^5 m9 a5 s5 M. I2 ]  09.4 Fully preserved, including canned or fermented fish and fish products, including mollusks, crustaceans, and echinoderms  $ o  i9 K: f3 D! X2 Y+ R
  10.2.3 Dried and/or heat coagulated egg products  
3 G7 a( ?: g- L( r  10.3 Preserved eggs, including alkaline, salted, and canned eggs  + s# a1 G0 P. X& A) _7 k& N
  10.4 Egg-based desserts (e.g., custard)  
8 S$ G  T8 u( w6 ?% [/ `+ r' I% f  11.6 Table-top sweeteners, including those containing high-intensity sweeteners  # w! Q) s/ v) e. V! ^, K, P
  12.2.2 Seasonings and condiments  , M9 a+ S6 D4 }0 D
  12.3 Vinegars  
' f; _% x9 e) y4 F: y* i+ n# i& s  12.4 Mustards  
2 F; n2 Q3 {" c9 Q- b( b, y4 z! D  I  12.5 Soups and broths  7 k& o+ V0 {% K) L% X( Q2 N2 }
  12.6 Sauces and like products  
7 W2 @/ q5 l% o; B  12.7 Salads (e.g., macaroni salad, potato salad) and sandwich spreads excluding cocoa- and nut-based spreads of food categories 04.2.2.5 and 05.1.3  
+ c0 k& H, ~6 N! D1 T+ g: W  12.8 Yeast and like products    H$ d5 s) C1 z- N3 N* `# r
  12.9 Protein products  
5 \! }7 w2 o- ^0 h* C  12.10 Fermented soybean products  
# f) T: v3 M/ H. A2 J  13.3 Dietetic foods intended for special medical purposes (excluding products of food category 13.1)  6 g4 Q: _  j% E" N/ R) k7 E
  13.4 Dietetic formulae for slimming purposes and weight reduction  
. r! j6 [& \* s) L# w- R" X% d  13.5 Dietetic foods (e.g., supplementary foods for dietary use) excluding products of food categories 13.1 - 13.4 and 13.6  
$ N9 r$ h8 b$ R% m/ G  S2 }  13.6 Food supplements  
# S- {5 ^! |; y# x5 |! G- Y9 a$ q  14.1.1.2 Table waters and soda waters  
- {1 ~& ~6 J- c- V5 ]+ j  14.1.4 Water-based flavoured drinks, including "sport," "energy," or "electrolyte" drinks and particulated drinks  + H+ y/ T  m2 |6 m& s
  14.2.1 Beer and malt beverages  2 i% W. G" k* y+ W; R
  14.2.2 Cider and perry  
) E/ p3 R- P7 F  14.2.4 Wines (other than grape)  1 ]2 B- w8 a! @( V. _! c/ R
  14.2.5 Mead  : Q0 W( g9 V7 E9 d/ `; B2 o
  14.2.6 Distilled spirituous beverages containing more than 15% alcohol  9 O( a& y' t: b6 s; j- q
  14.2.7 Aromatized alcoholic beverages (e.g., beer, wine and spirituous cooler-type beverages, low alcoholic refreshers)  
  z5 t" |+ g9 N& \( E  15.0 Ready-to-eat savouries    U9 ~! S' W; P  e0 D) h# z
  16.0 Composite foods - foods that could not be placed in categories 01 – 15
, S. I: s" T5 N7 D3 w6 z0 H- S/ U: D

9 l6 h: c: N& ^7 B部分译文:- N4 ^7 }, K9 a: d$ v, _2 V% X

, d+ z! P+ @5 Z0 f食品添加剂通用规则3 c" h; U" w" g- l, t
食品添加剂
3 e; G# X0 }6 _4 V                    二氧化钛(171)
; ?( t! M" E9 [食品类别:- M; y- V; m( O4 q6 N7 c4 w4 t- H
06.3 早餐谷类,包括燕麦片
! ?& @- h5 |* a. C; G8 ?1 ~06.4.3面条及类似产品1 r2 D$ x2 e+ q3 X2 `; C$ X
06.5 谷类,淀粉甜点(包括:米粉布丁,木薯布丁)6 u5 D( x4 l4 ?. N* I+ R% @& `" ?
06.6 面团! P; ~8 I$ @& W0 g; f0 D, {* q1 m
06.7 预煮的或加工的米产品,包括年糕(只包括中式的)06.8 Soybean products ) T7 [( O# C7 U  o4 }6 ^
07.0 烘焙类
0 c: [) g4 Y) H7 V  ~  ~07.1 面包,普通烘焙类,以及其混合物. M+ u6 L- L! o4 K+ J1 w
07.1.1 面包,面包卷
6 j) o! t$ h& X9 p6 a' @07.1.1.1 酵母发酵面包及特殊面包
6 ^% m. s+ v( n/ \! G' o07.1.1.2 苏打面包$ ~$ b0 v1 [. s+ L3 D9 o2 I

& @9 [# ]- y" o7 p
% h4 i7 T3 d' o# i, b* J& P& [
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖 支持支持 反对反对
沙发
 楼主| 发表于 2008-5-23 12:10:00 | 只看该作者

二氧化钛(钛白粉)

二氧化钛(钛白粉)
: R, U1 O) h3 E' e
2 z- i. j* R3 N0 ~- CJECFA关于二氧化钛(钛白粉)的结论
, Y$ o1 I" y2 i& b
! M8 q" s7 K" \2 ]$ R摘要: 2006年JECFA关于二氧化钛的结论
! j) Q! Y. l2 C4 {9 R5 lADI值:不作限制。
0 J% x2 v5 f$ T" z/ ^9 o功能:着色剂
. r4 v2 G5 A: I. Y# N7 z
( T) M; h& o( qTITANIUM DIOXIDE
  I" }/ S. E% ]9 H9 }3 j5 i8 hPrepared at the 67th JECFA (2006) and published in FAO JECFA) W6 s/ k" g- [$ B# P
Monographs 3 (2006), superseding specifications prepared at the 63rd
+ y- H2 @. u5 d" ~7 e$ IJECFA (2004) and published in FNP 52 Add 12 (2004) and in the
# ~) |# H0 [) l3 m: BCombined Compendium of Food Additive Specifications, FAO JECFA  G! ?% b6 D8 G) A- @3 v' \* x
Monographs 1 (2005). An ADI “not limited” was established at the 13th+ G: ^! B+ h  t* C" ~/ a! K
JECFA (1969).
. |4 C+ a6 w2 X$ Y3 Y2 v/ `$ sSYNONYMS; @3 p( c! t+ s7 |) j
Titania, CI Pigment white 6, CI (1975) No. 77891, INS No. 171
! n9 Y8 n& B. v: u* Y  GDEFINITION
  Z: G8 U+ `) uTitanium dioxide is produced by either the sulfate or the chloride
  \: I8 G1 w5 s, \- Z- c* l$ j8 s& fprocess. Processing conditions determine the form (anatase or rutile6 m5 T7 ]- s0 M. K* g  n% A
structure) of the final product.. I+ N% b+ |# f2 F: V& {
In the sulfate process, sulfuric acid is used to digest ilmenite (FeTiO3)
# @8 |4 g  |5 `( M7 Ror ilmenite and titanium slag. After a series of purification steps, the2 }5 i" t# w5 v, ^+ ~9 r! Q
isolated titanium dioxide is finally washed with water, calcined, and. M0 o' L/ B- |" o2 @9 ~: F
micronized.6 l& I1 E8 u, A* \! L
In the chloride process, chlorine gas is reacted with a titaniumcontaining" f/ q: u: T2 [, ]9 Y
mineral under reducing conditions to form anhydrous
) N! j9 d  h; o- ctitanium tetrachloride, which is subsequently purified and converted to
/ t2 J, }$ O! a6 j. {% |, {titanium dioxide either by direct thermal oxidation or by reaction with
" \" n: V" F  R! h* rsteam in the vapour phase. Alternatively, concentrated hydrochloric7 P' u- O1 G9 q; m. _
acid can be reacted with the titanium-containing mineral to form a
: B. u# z+ F: z) l  B" ~0 }& isolution of titanium tetrachloride, which is then further purified and
3 B2 d9 J. l0 P" v0 s5 T2 W2 r" }converted to titanium dioxide by hydrolysis. The titanium dioxide is
4 G6 w. d0 u6 i4 U5 z% L3 U" W& Efiltered, washed, and calcined.
+ s' l! D: g% ~/ S2 nCommercial titanium dioxide may be coated with small amounts of' K3 {4 e7 a, ^; n& m
alumina and/or silica to improve the technological properties of the
! A% h: h" E' u3 {) r5 a* Bproduct./ a! r. `9 O$ K2 B0 X8 [+ k. P
C.A.S. number 13463-67-7
1 r) p- Y/ P" B( K& ^5 Q0 s- AChemical formula TiO2: X- n- h2 c: V: R9 B5 c9 I
Formula weight% |0 `- j- }$ B' B5 i0 C3 L
79.88" M* e% k  b& n( t; K8 a
Assay) ]" {! O% I2 C; C  O- O2 {# s
Not less than 99.0% on the dried basis (on an aluminium oxide and
- W2 w7 M% e5 ?! K; \8 gsilicon dioxide-free basis). h3 [. V( a. X5 h7 p' Q  M
DESCRIPTION
6 v3 R0 g: O' i! l$ N) SWhite to slightly coloured powder7 }3 S7 K8 {3 m: d" y- I
FUNCTIONAL USES# P8 s3 L# `2 P: o; R/ X$ i
Colour8 o$ T" \8 C2 b( B5 q* P
CHARACTERISTICS& n6 n( K% G5 _2 @% A/ q8 q
IDENTIFICATION
' k" Y$ z) ?- `9 p  U( ~( dSolubility (Vol. 4)
; G/ B# p1 X1 Z% ~0 i$ ]" ZInsoluble in water, hydrochloric acid, dilute sulfuric acid, and organic
- v, t% S5 }' u4 E, n3 C" Asolvents. Dissolves slowly in hydrofluoric acid and hot concentrated
* ]+ e7 c7 L+ f$ K8 ?) x; bsulfuric acid.
2 T4 t8 l  [3 y# fColour reaction
& M" G. E; ]2 X9 CAdd 5 ml sulfuric acid to 0.5 g of the sample, heat gently until fumes of
0 X( j( j/ o+ U' v1 \sulfuric acid appear, then cool. Cautiously dilute to about 100 ml with
. @2 Z6 A$ A5 H; S) h. d% twater and filter. To 5 ml of this clear filtrate, add a few drops of
+ D0 U6 K1 N! m5 \4 \% @hydrogen peroxide; an orange-red colour appears immediately." e: f: D8 f' H/ \7 _
PURITY3 C; g! ]2 u5 ~0 {
Loss on drying (Vol. 4) Not more than 0.5% (105°, 3 h)
' H4 r; p5 C- V0 d: sLoss on ignition (Vol. 4)
8 n2 {/ k2 h$ Q4 a) `Not more than 1.0% (800o) on the dried basis
! V2 }; T& v' l: o7 G1 n# [Aluminium oxide and/or7 D9 v" U- I" }9 a
silicon dioxide
* ^* n8 l% m/ c" N' o7 ^Not more than 2%, either singly or combined# L  k7 T, x+ D. h+ I4 p7 n" g" i
See descriptions under TESTS$ J8 i5 J( k. @5 f
Acid-soluble substances Not more than 0.5%; Not more than 1.5% for products containing  }: y, T( v  n! Z. T
alumina or silica.0 j7 c% V. j7 U6 U/ ~
Suspend 5 g of the sample in 100 ml 0.5 N hydrochloric acid and8 t7 v9 A% o/ [0 d- H
place on a steam bath for 30 min with occasional stirring. Filter( `, x* \; ~% ^- M. j
through a Gooch crucible fitted with a glass fibre filter paper. Wash
! K9 r+ D6 r. iwith three 10-ml portions of 0.5 N hydrochloric acid, evaporate the6 B- j! A/ W- K* v5 f
combined filtrate and washings to dryness, and ignite at a dull red
6 O5 @9 F1 w$ B) K( R4 Fheat to constant weight.
/ M, j2 _7 [, G  Z6 _Water-soluble matter
0 k$ `0 M. F! O6 M' p4 c! O8 S. q/ S(Vol. 4)* K3 F$ v0 m3 X& h0 n5 k
Not more than 0.5%
: }% z. b! {- k, p! [Proceed as directed under acid-soluble substances (above), using9 h$ T( x& l# t; U
water in place of 0.5 N hydrochloric acid.& r4 g" N9 i2 x; K8 v
Impurities soluble in 0.5 N) t1 E5 a7 U8 N3 T* h7 l: B/ C* m
hydrochloric acid% A+ }" y/ X' I$ C
Antimony Not more than 2 mg/kg. @$ ?$ g6 n- |6 V2 @( N! G& D
See description under TESTS
3 d$ h6 C( |7 {- @Arsenic Not more than 1 mg/kg5 l/ V0 y) o  s' X& ^
See description under TESTS) }2 V3 y7 Z3 Z! J1 ]8 c/ ]% n
Cadmium Not more than 1 mg/kg
$ k. g) c. u$ ~/ mSee description under TESTS
1 f7 H4 F5 B! Y6 g4 |; v! GLead
& m6 N. Y- d" g  ~% K, \/ n3 aNot more than 10 mg/kg
$ b8 H# G- c3 d2 y  g. X9 kSee description under TESTS. L" F" o/ h+ D
Mercury (Vol. 4) Not more than 1 mg/kg0 S/ M  Y/ A; Z3 t) N  R
Determine using the cold vapour atomic absorption technique. Select a: h- x1 p9 ?7 T) E2 W
sample size appropriate to the specified level
, l' m& {2 K& o4 ]! s; }) UTESTS
: e# ]+ I2 I" S* U/ bPURITY TESTS
. ^( l' j4 B7 t$ S: j- [: j! eImpurities soluble in 0.5 N
2 O. y2 _: D( r/ x* ohydrochloric acid
2 T) M8 Z- ?- p7 [% ~8 f+ }5 rAntimony, arsenic,+ L2 s) S/ v1 Z5 s+ `# Z
cadmium and lead
' M) c* H$ }9 @(Vol.4)
/ b: y3 O3 L: _Transfer 10.0 g of sample into a 250-ml beaker, add 50 ml of 0.5 N
1 M, w; \* C& G# Thydrochloric acid, cover with a watch glass, and heat to boiling on a5 d/ Y) A4 S6 H1 b
hot plate. Boil gently for 15 min, pour the slurry into a 100- to 150-ml
# f+ h6 ^' [' L4 h7 e! bcentrifuge bottle, and centrifuge for 10 to 15 min, or until undissolved" b( L/ W" c  k" X  i
material settles. Decant the supernatant extract through a Whatman6 s1 {/ y$ f+ \$ P+ K( k
No. 4 filter paper, or equivalent, collecting the filtrate in a 100-ml
* ^6 L& s) J5 Yvolumetric flask and retaining as much as possible of the undissolved
" }" W' Z9 ?2 N* O" B* ematerial in the centrifuge bottle. Add 10 ml of hot water to the original  ?: v& h9 q  F+ r- l2 D3 N
beaker, washing off the watch glass with the water, and pour the
  e) w  j% o3 Ncontents into the centrifuge bottle. Form a slurry, using a glass stirring
2 F. A4 c* v; R; V. J8 yrod, and centrifuge. Decant through the same filter paper, and collect
7 l+ \& }0 c0 jthe washings in the volumetric flask containing the initial extract.
# u8 d$ C& C2 n8 ~7 W/ VRepeat the entire washing process two more times. Finally, wash the- k5 \- `" v% d- X4 V2 I
filter paper with 10 to 15 ml of hot water. Cool the contents of the flask" i/ Q( [9 O. j8 I
to room temperature, dilute to volume with water, and mix.; {. J: s. I" [  @
Determine antimony, cadmium, and lead using an AAS/ICP-AES  @, V7 M( ^, J4 P# V, \
technique appropriate to the specified level. Determine arsenic using the. r' d& D  n! A  B5 n' ^
ICP-AES/AAS-hydride technique. Alternatively, determine arsenic using
# O+ q" L+ h$ j+ y7 _2 c4 iMethod II of the Arsenic Limit Test, taking 3 g of the sample rather than
, Q8 T) R8 X. F: ~: Y0 F1 g. The selection of sample size and method of sample preparation
  g* U2 [8 k3 k: pmay be based on the principles of the methods described in Volume 4.
0 I/ I* r7 A% v% r/ \Aluminium oxide Reagents and sample solutions
6 K1 e8 ~8 }; \3 l: f, R7 V0.01 N Zinc Sulfate  c% |$ [! F) Q1 A+ `9 l: |
Dissolve 2.9 g of zinc sulfate (ZnSO4 ? 7H2O) in sufficient water to
; |3 O# y" V) L( y1 Bmake 1000 ml. Standardize the solution as follows: Dissolve 500 mg) y& _6 T2 A9 k
of high-purity (99.9%) aluminium wire, accurately weighed, in 20 ml of
6 n3 e' ]9 ?( O9 ^  o8 A& wconcentrated hydrochloric acid, heating gently to effect solution, then/ [3 W& J/ v/ ^! I
transfer the solution into a 1000-ml volumetric flask, dilute to volume+ O' J' _+ a, P# o
with water, and mix. Transfer a 10 ml aliquot of this solution into a 500; h4 v) U1 j: A; n4 \( U) U
ml Erlenmeyer flask containing 90 ml of water and 3 ml of
% y2 C; a7 R! O/ \* bconcentrated hydrochloric acid, add 1 drop of methyl orange TS and
- U% O9 U' e+ t1 L  Y25 ml of 0.02 M disodium ethylenediaminetetraacetate (EDTA) Add,
* e# f! M0 k" e0 `" _2 odropwise, ammonia solution (1 in 5) until the colour is just completely. @7 n' ]5 u3 O7 W
changed from red to orange-yellow. Then, add:
; i! f' s9 R0 P: I, {# {! V(a): 10 ml of ammonium acetate buffer solution (77 g of
- g5 k) c) X. X& D2 d  [+ H. H* nammonium acetate plus 10 ml of glacial acetic acid, dilute to
3 N# B* _; p  C' B( d5 [1000 ml with water) and
0 w, J" @$ u. G% m(b): 10 ml of diammonium hydrogen phosphate solution (150 g, Y6 f- Z# N- s/ L4 T
of diammonium hydrogen phosphate in 700 ml of water,6 H. U2 V0 j# q, p9 \
adjusted to pH 5.5 with a 1 in 2 solution of hydrochloric acid,! R) R9 D# O6 O, _3 P
then dilute to 1000 ml with water).
1 q, b+ b- {$ r  K$ s* Y0 s0 CBoil the solution for 5 min, cool it quickly to room temperature in a
1 R/ p5 @1 U% v, y) B7 Pstream of running water, add 3 drops of xylenol orange TS, and mix.5 \+ x) U# V+ l0 f# ~5 i1 @9 Y
Using the zinc sulfate solution as titrant, titrate the solution to the first
3 z. b. t) {+ X; Byellow-brown or pink end-point colour that persists for 5-10 sec. (Note:
0 d. u. D- s; G5 z5 u: tThis titration should be performed quickly near the end-point by9 J; P: ]& Q% z7 \# M
adding rapidly 0.2 ml increments of the titrant until the first colour# C( b, h9 {8 `
change occurs; although the colour will fade in 5-10 sec, it is the true
3 i) G. u1 `0 p% O( Z. b( R" k& Gend-point. Failure to observe the first colour change will result in an! z, {+ b! g! ~! A# C
incorrect titration. The fading end-point does not occur at the second
2 y) W5 M/ c1 M. r% O# i& pend-point.)
9 ]& E9 }1 J8 D: K- ~Add 2 g of sodium fluoride, boil the mixture for 2-5 min, and cool in a* N* u% _1 j8 `8 P) y# S- g4 k
stream of running water. Titrate this solution, using the zinc sulfate
# b) |2 g8 ^. m0 f+ j3 z( asolution as titrant, to the same fugitive yellow-brown or pink end-point7 s& q) h% ?  X4 ?; @+ a  x
as described above.# A, P8 `' y) k' y5 L& d4 r
Calculate the titre T of zinc sulfate solution by the formula:: {* d! P$ }, l5 S, Q9 N
T = 18.896 W / V% ]3 W7 Q% r  E- t  z9 p
where
$ f1 m; r3 P1 f" {7 U7 {T is the mass (mg) of Al2O3 per ml of zinc sulfate solution
3 g& u# L& a  v+ ~$ gW is the mass (g) of aluminium wire/ W* M$ N! H4 e
V is the ml of the zinc sulfate solution consumed in the
& o# z" o1 x7 ?second titration% `. y: y( `4 `
18.896 = (R × 1000 mg/g × 10 ml/2)/1000 ml and7 J: O- [( Z  k2 |6 U) g2 }& K
R is the ratio of the formula weight of aluminium oxide to
# H) |+ f. X( G" p2 O7 Vthat of elemental aluminium., D$ H. D5 V& R2 S
Sample Solution A
7 Q2 |% |- e" {0 FAccurately weigh 1 g of the sample and transfer to a 250-ml high-silica7 P- H9 j& R1 O& h/ M: |
glass Erlenmeyer flask. Add 10 g of sodium bisulfate (NaHSO4 ? H2O).
9 @% t% w- `6 w0 G0 p- d(Note: Do not use more sodium bisulfate than specified, as an excess
% p( t' d" d8 N$ vconcentration of salt will interfere with the EDTA titration later on in the8 l5 p3 m: G- L8 S8 u. Q0 G( h! L
procedure.) Begin heating the flask at low heat on a hot plate, and) F3 J0 e" I. \4 A
then gradually raise the temperature until full heat is reached.2 o9 j' S% A7 o% m6 F+ k
(Caution: perform this procedure in a well ventilated area. ) When0 A6 r  t1 y: g' e1 u5 M( i: f
spattering has stopped and light fumes of SO3 appear, heat in the full3 {3 v8 `2 G( X% c! u8 z0 U- X7 v
flame of a Meeker burner, with the flask tilted so that the fusion of the; [! O. T1 A( s3 R9 C: \% D
sample and sodium bisulfate is concentrated at one end of the flask.
' e. I8 i3 T, P% WSwirl constantly until the melt is clear (except for silica content), but  H& e$ D1 O( U+ D1 T
guard against prolonged heating to avoid precipitation of titanium
" v: X) W. Q0 p0 Edioxide. Cool, add 25 ml sulfuric acid solution (1 in 2), and heat until
0 S( X0 }/ l& Y5 V# b) a$ [; lthe mass has dissolved and a clear solution results. Cool, and dilute to
; Q: }0 h8 S7 |$ t# ~120 ml with water. Introduce a magnetic stir bar into the flask.8 n/ z+ o- L" n2 O* b! p; f8 M
Sample Solution B
+ A: x! a3 \, h( D% e/ m4 gPrepare 200 ml of an approximately 6.25 M solution of sodium# ~: G% G; I0 j* Z! T" |
hydroxide. Add 65 ml of this solution to Sample Solution A, while0 y  ]5 J) G2 O5 i1 d. D+ F
stirring with the magnetic stirrer; pour the remaining 135 ml of the
+ x6 e. e$ w1 Z2 a9 a6 malkali solution into a 500-ml volumetric flask.3 x% o" Q2 Y0 y+ ^0 s
Slowly, with constant stirring, add the sample mixture to the alkali
& B, l9 W( x5 x1 {8 Msolution in the 500-ml volumetric flask; dilute to volume with water,
$ X. ~6 {  M/ \% K0 H4 o) ]: o+ M+ Gand mix. (Note: If the procedure is delayed at this point for more than! A$ R- l+ Y; G3 a3 ^, F3 m/ s/ ?
2 hours, store the contents of the volumetric flask in a polyethylene% |$ b. b7 f$ ~4 ^# F9 \3 }1 o3 ?
bottle.) Allow most of the precipitate to settle (or centrifuge for 5 min),5 b/ h. w1 o5 m4 P4 M6 H4 q
then filter the supernatant liquid through a very fine filter paper. Label
! d2 ^' j! D9 `. X& ?3 kthe filtrate Sample Solution B.* q& P! I7 Q7 k, n" B
Sample Solution C
1 B( Y2 u! Z& {3 }9 P, X6 jTransfer 100 ml of the Sample Solution B into a 500-ml Erlenmeyer6 t: U  h  I) D' R. M. ~
flask, add 1 drop of methyl orange TS, acidify with hydrochloric acid
0 X0 w! b+ o: z& ysolution (1 in 2), and then add about 3 ml in excess. Add 25 ml of 0.02
1 @2 g  g8 g7 n2 K9 G0 W0 IM disodium EDTA, and mix. [Note: If the approximate Al2O3 content is
# J, M1 ]% B6 e7 l* u* \known, calculate the optimum volume of EDTA solution to be added
9 N/ w; O% Y' j" [' x" S+ Sby the formula: (4 x % Al2O3) + 5.]
8 J2 b. Y8 p' [8 _' CAdd, dropwise, ammonia solution (1 in 5) until the colour is just
& t7 @" G- w/ b6 `& }completely changed from red to orange-yellow. Then add10 ml each' L( `" J- Y. `( R, r0 ^* P
of Solutions 1 and 2 (see above) and boil for 5 min. Cool quickly to
& c5 }, ]! C6 C* Q" Rroom temperature in a stream of running water, add 3 drops of xylenol
4 H) d  M2 j0 ~( r8 @$ Porange TS, and mix. If the solution is purple, yellow-brown, or pink,
6 i0 a* C  f6 V" Fbring the pH to 5.3 - 5.7 by the addition of acetic acid. At the desired
7 U2 F" \" J: L* r* {/ f3 h  IpH, a pink colour indicates that not enough of the EDTA solution has
, h9 U0 S5 t+ l8 \+ v' abeen added, in which case, discard the solution and repeat this
, D& k6 M& h1 Y: f! g8 M  }/ J3 tprocedure with another 100 ml of Sample Solution B, using 50 ml,
( [+ q) {; e! @3 y5 b# e1 O7 Qrather than 25 ml, of 0.02 M disodium EDTA.
" p/ G3 Y* K" d7 b  {Procedure
- }+ I: Y$ _6 m2 \/ dUsing the standardized zinc sulfate solution as titrant, titrate Sample
" u5 `5 D* Q2 @  ]Solution C to the first yellow-brown or pink end-point that persists for, z* Y7 j: s7 [& Q5 L8 y( H; c7 S3 A
5-10 sec. (Important: See Note under “0.01 Zinc sulfate”.) This first# x/ q2 C6 \  F9 B- y7 D; m, ]: I$ H
titration should require more than 8 ml of titrant, but for more accurate& S6 K! ^! |( x7 Q( k" U8 j
work a titration of 10-15 ml is desirable.
+ y: Q6 E* I  E- i: RAdd 2 g of sodium fluoride to the titration flask, boil the mixture for 2-5
; L7 H. v+ j  S! wmin, and cool in a stream of running water. Titrate this solution, using4 N' v( D0 r" p( @% u2 a0 w+ J
the standardized zinc sulfate solution as titrant, to the same fugitive
' @) O0 C: U0 I. }yellow-brown or pink end-point as described above.8 C$ W5 b- E. [% u3 x" X
Calculation:
0 P( k& g: S0 R1 c0 y# T# MCalculate the percentage of aluminium oxide (Al2O3) in the sample& r, @" ~0 p2 ]& N* \  G$ o6 H
taken by the formula:
, E; X7 f; G6 J7 j% Al2O3 = 100 × (0.005VT)/S
% L- v+ }: f" \+ w+ @! y" ?7 {+ Mwhere
! n$ Q' u; n- O+ F2 ~: b; _% `* U- K* AV is the number of ml of 0.01 N zinc sulfate consumed in
: F5 X8 k2 A4 V# `5 mthe second titration,5 I( v! {6 K% v1 |0 c$ y+ y. p" N
T is the titre of the zinc sulfate solution,
7 }! B! n3 z) S# {! u0 PS is the mass (g) of the sample taken, and! t2 i1 Y4 s  w: ~( v
0.005 = 500 ml / (1000mg/g × 100 ml).
) D! w0 |6 Z4 H( uSilicon dioxide Accurately weigh 1 g of the sample and transfer to a 250-ml high-silica, Y" ~6 R: H: G& y" m% \
glass Erlenmeyer flask. Add 10 g of sodium bisulfate (NaHSO4 ? H2O).1 {6 j, u/ q6 S
Heat gently over a Meeker burner, while swirling the flask, until
$ I( M9 d- j% M! T' r8 O' hdecomposition and fusion are complete and the melt is clear, except; e' c! H4 W# }4 i0 Q
for the silica content, and then cool. (Caution: Do not overheat the: F3 k$ m* Q! l6 }1 X  r
contents of the flask at the beginning, and heat cautiously during
* z% ]  L! Y* j. q, k5 efusion to avoid spattering.). H3 m! d$ n; I& M3 i0 e! b8 f! d
To the cooled melt add 25 ml of sulfuric acid solution (1 in 2) and heat
% {% w' C3 Q, W" \) `- _carefully and slowly until the melt is dissolved. Cool, and carefully add
7 @1 Q) x, `$ k% M8 H! {150 ml of water by pouring very small portions down the sides of the0 c! `9 @7 v( n. m1 ]& i9 c& V
flask, with frequent swirling to avoid over-heating and spattering. Allow
1 N# P3 \1 L& Zthe contents of the flask to cool, and filter through fine ashless filter
+ m8 {! }2 B0 a1 y- f1 u0 M) Zpaper, using a 60 degree gravity funnel. Rinse out all the silica from1 E3 f% j# B/ o. @0 U$ q5 s
the flask onto the filter paper with sulfuric acid solution (1 in 10).
4 ?7 ~: [$ O3 C9 x$ m( h( wTransfer the filter paper and its contents into a platinum crucible, dry in
7 G6 y9 ]: L& C, Y& yan oven at 1200, and heat the partly covered crucible over a Bunsen3 e" V8 b! U" C5 o/ ~# S
burner. To prevent flaming of the filter paper, first heat the cover from
  F, `8 A1 v4 N8 p% [above, and then the crucible from below.) G* U. z, Q8 o( F6 I
When the filter paper is consumed, transfer the crucible to a muffle
( y- x8 y$ V6 p6 H' Rfurnace and ignite at 1000o for 30 min. Cool in a desiccator, and
7 l- `4 [  k$ I6 \8 T" F0 Rweigh. Add 2 drops of sulfuric acid (1 in 2) and 5 ml of concentrated+ @. ~+ R6 h8 A: Z* L
hydrofluoric acid (sp.gr. 1.15), and carefully evaporate to dryness, first
# E; b( g5 p0 k$ J: D, S5 Hon a low-heat hot plate (to remove the HF) and then over a Bunsen& v. I2 H- }% V/ ]1 L* g
burner (to remove the H2SO4). Take precautions to avoid spattering,2 D0 n4 n( v' W  o
especially after removal of the HF. Ignite at 1000o for 10 min, cool in a
7 M7 I9 k, r1 Cdesiccator, and weigh again. Record the difference between the two
+ ~8 ?% b# n4 V9 U$ jweights as the content of SiO2 in the sample.+ I, e' G( S9 o$ P1 t) Z
METHOD OF ASSAY0 U$ b: T1 F5 F, _+ {
Accurately weigh about 150 mg of the sample, previously dried at 105o8 I. S1 P3 w& x  S; ~0 X/ M) W
for 3 hours, and transfer into a 500-ml conical flask. Add 5 ml of water* v2 g3 K2 P3 I6 {1 M7 `" A
and shake until a homogeneous, milky suspension is obtained. Add 307 u* H7 |$ Z! m, M" k
ml of sulfuric acid and 12 g of ammonium sulfate, and mix. Initially! [; |/ A9 d, s, {
heat gently, then heat strongly until a clear solution is obtained. Cool,
! t/ b! }: x3 d6 A/ Y* ?then cautiously dilute with 120 ml of water and 40 ml of hydrochloric# l4 n( a6 }0 W; M
acid, and stir. Add 3 g of aluminium metal, and immediately insert a8 H( o2 b) X+ p. {) y
rubber stopper fitted with a U-shaped glass tube while immersing the
0 F2 j# S* @1 ]: F6 d6 u7 Dother end of the U-tube into a saturated solution of sodium, ?$ ~0 w# e* p$ Q. p
bicarbonate contained in a 500-ml wide-mouth bottle, and generate
( L" Y- W1 F& e( h( Shydrogen. Allow to stand for a few minutes after the aluminium metal
! p' K: ]% y: t7 ~has dissolved completely to produce a transparent purple solution.
+ Y9 m+ @" n0 w& `$ v/ V2 UCool to below 50o in running water, and remove the rubber stopper
- U8 N9 j6 Z, c( E3 ycarrying the U-tube. Add 3 ml of a saturated potassium thiocyanate
! H( T6 }/ X+ H: }1 Msolution as an indicator, and immediately titrate with 0.2 N ferric. D# {* x* L% H7 i
ammonium sulfate until a faint brown colour that persists for 30
1 |) F" V& F2 B5 T9 L9 [seconds is obtained. Perform a blank determination and make any4 S, D1 z) ^  O* [
necessary correction. Each ml of 0.2 N ferric ammonium sulfate is
6 ~- x1 S" J! I6 F! Q5 bequivalent to 7.990 mg of TiO2.
% a8 d1 ~  U) ^/ Y, _, Y7 f; D6 l
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|申请友链|手机版|华讯行业网 ( 桂B2-20030027  

GMT+8, 2025-4-27 12:48 , Processed in 0.037300 second(s), 23 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表